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Early research with liquid helium showed that it had re-
markable new properties, especially below the so-called
lambda transition near 2.2 K, where there is a sharp, narrow
peak in the specific heat (see figure 1a). The liquid below the
transition was named helium II to distinguish it from the liq-
uid above the transition, called helium I. Three properties dis-
covered in the late 1930s were particularly puzzling. First, a
test tube lowered partly into a bath of
helium II will gradually fill by means of
a thin film of liquid helium that flows
without friction up the tube’s outer wall.
Second, in the thermomechanical effect,
if two containers are connected by a
very thin tube that can block any vis-
cous fluid, an increase in temperature in
one container will be accompanied by a
rise in pressure, as seen by a higher liq-
uid level in that container. Third is the
viscosity paradox: The oscillations of a
torsion pendulum in helium II will
gradually decay with an apparent vis-
cosity about one-tenth that of air, but if
liquid helium is made to flow through a
very fine tube, it will do so with no ob-
servable pressure drop—the apparent
viscosity is not only small, it is zero! 

Laszlo Tisza was captivated by an
idea being pushed in those days by Fritz
London that the transition to helium II
was a manifestation of Bose–Einstein
condensation (BEC). In 1925 Albert Ein-
stein had generalized a calculation for
photons by Satyendra Nath Bose to
massive particles, such as atoms; he
found that for an ideal gas of identical,
 integer-spin particles below a certain
temperature, a macroscopic fraction of
the particles accumulates, or condenses,
in the  lowest- energy  single- particle
state with zero momentum. After one of
his discussions with London and in-
spired by the recently discovered ef-
fects, Tisza had the idea that the Bose-
 condensed fraction of helium II formed
a superfluid that could pass through
narrow tubes and thin films without

dissipation. The uncondensed atoms, in contrast, constituted
a normal fluid that was responsible for phenomena such as
the damping of pendulums immersed in the fluid. That rev-
olutionary idea demanded a “two-fluid” set of equations of
motion and, among other things, predicted not only the exis-
tence of ordinary sound—that is, fluctuations in the density
of the fluid—but also fluctuations in entropy or temperature,

The two-fluid theory
and second sound in
liquid helium
Russell J. Donnelly

Laszlo Tisza’s contributions to our understanding of superfluid helium are often overshadowed by Lev
Landau’s, but Tisza’s insights are still paying dividends—and not just for helium. 
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Figure 1. Properties of liquid helium. (a) The
specific heat of liquid helium has an anomalous
jump near 2.2 K. The “lambda transition” between
the superfluid phase (helium II) at lower temperatures and the normal phase (helium I)
at higher temperatures is so named because the anomaly resembles the Greek letter λ.
(b) Lev Landau’s 1941 dispersion curve for the excitations in superfluid helium II had two
branches: a linear curve for phonons, with a slope corresponding to the velocity of
sound, and a quadratic curve with an energy gap Δ for a new class of excitations he
called rotons. (c) Landau modified the curve in 1947 so that phonons (low- momentum
excitations) and rotons (excitations near the minimum at momentum p0) were parts of a
single excitation branch. (d) An experimentally measured dispersion curve obtained by
inelastic neutron scattering. The curve’s exact form varies with temperature and pressure. 
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which were given the designation “second sound” by Russian
physicist Lev Landau (see box 1). By 1938 Tisza’s and Lon-
don’s papers had at least qualitatively explained all the exper-
imental observations available at the time: the viscosity para-
dox, frictionless film flow, and the thermomechanical effect.1

A mixture of two fluids
Tisza’s two-fluid hypothesis eventually became the basis for
understanding the behavior of helium II. (For a recent history
of ideas on superfluidity in helium II, see reference 2.) The
flow of helium II acts as if it were a mixture of two fluids.
One, called the superfluid, has no viscosity or entropy and
can flow without dissipation through extremely narrow
channels. The other, called the normal fluid, does have a finite
viscosity η and carries all the entropy S. The liquid is pictured
to be all normal fluid at the lambda transition and all super-
fluid at absolute zero. The total density ρ is given by the sum
of the  normal-fluid density ρn and the superfluid density ρs.
The proportion of each fluid can be determined, for example,
by measuring the fraction of liquid that clings to an oscillat-
ing disk by virtue of its viscosity.

The superfluid is viewed as a background fluid that is,
in effect, at absolute zero. The normal fluid is the sum of el-
ementary excitations, or quasiparticles, which are excited
from the superfluid in increasing numbers as the tempera-
ture is increased from absolute zero. There are two different
kinds of quasiparticles—phonons and rotons—an idea first

put forward by Landau3 in 1941 and then modified in 1947
(see figures 1b and 1c and box 2). Phonons are quantized, col-
lisionless sound waves (not to be confused with ordinary, hy-
drodynamic sound waves) and occur in crystals as well as su-
perfluid helium. Rotons are  higher- energy excitations, and
their properties are still under study. An experimental quasi-
particle spectrum is shown in figure 1d.

Today the most fundamental aspect of a superfluid is
considered to be the Bose–Einstein condensate. The conden-
sate is described by a quantum mechanical wavefunction that
characterizes a macroscopic number of atoms in a single
quantum state—a coherent matter wave. The coherence of
the wavefunction leads to, among other things, the quantiza-
tion of circulation: In particular, if a container of superfluid
is rotated, quantized vortex lines will appear arrayed parallel
to the axis of rotation, an entire subject in itself.

The race for second sound
Although helium II is now well understood, such was not the
case in the late 1930s, and Tisza’s prediction of second sound
became a test case for the two-fluid model. 

First sound is ordinary sound, which consists of fluctu-
ations in total density ρ. Its velocity, u1, is only weakly de-
pendent on temperature. Second sound has a velocity u2 that
is a strong function of temperature, becoming zero at the
lambda point. As shown in box 1, second sound consists of
fluctuations in entropy or temperature.

In Laszlo Tisza’s two-fluid model of helium  II, the normal and
superfluid components each have their own independent den-
sity (ρn and ρs) and velocity (vn and vs). The total density of the
liquid is the sum of the densities of the two components:
ρ = ρn + ρs.

For the two-fluid system, the equations of motion can be 
linearized (as is appropriate for sound waves) to obtain 

Here, P is pressure, S entropy, T temperature, and η viscosity. If
the viscous term is omitted, then after some manipulation two
wave equations emerge:

These equations produce two velocities of “sound”:

The derivation is valid only if the heat capacities at constant
pressure and constant volume (denoted by C) are nearly equal,
as they are in liquid helium. The velocity u1 is the usual expres-
sion for the speed of sound. The expression for the  second-
sound velocity u2 was first given by Lev Landau.3

The figure contrasts the waves constituting first sound (top)
and second sound (bottom). The proportions of the symbols n

and s on any vertical line represent schematically the relative
portions of the normal and superfluid components; the total
number of symbols on a vertical line represents the total density
of the fluid. The waves are traveling horizontally. Here, first
sound’s fluctuations in density are driven by changes in pres-
sure, and the two components move in phase with each other.
Second sound’s fluctuations in entropy (carried by the normal
fluid) are driven here by changes in temperature; the two com-
ponents are out of phase, and the density remains constant to
first order. (Figure adapted from ref. 10.) 

Box 1. The velocities of first and second sound in helium II
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Tisza’s analysis led to the expression1

where Tλ is the lambda temperature. Clearly, u2 → 0 when
T → 0.

Word of Tisza’s model spread even before World War II
broke out in 1939. Among the first to hear of it was Jack
Allen, one of the discoverers of superfluid flow in helium,
then at Cambridge University. Allen wrote to me a number
of times during his lifetime. In an undated manuscript enti-
tled “Notes to Help Obit Writers in the RS and RSE” (refer-
ring to the Royal Society and the Royal Society of Edin-
burgh), Allen berated himself (as we all do in missing
important discoveries one is in a position to make): “I also
stupidly failed to pick up on Tisza’s suggestion to me of
‘ondes de température,’ [temperature waves] and so missed
out to [Vasilii] Peshkov on ‘second sound.’ ” He then added,
in a handwritten footnote, something I had drawn to his at-
tention: “Actually, Ernest Ganz (a student) and I nearly got
it by finding the speed of a heat pulse in Helium II to be
~104 cm/s.”

Landau moved from Kharkov to Moscow in 1937 to join
Pyotr Kapitsa’s Institute for Physical Problems. It was there
that Landau put forward his brilliant phonon–roton theory
of helium II. His model and resulting equations were so suc-
cessful and productive that Tisza’s pioneering work has been
largely forgotten. But one should remember that it was Tisza
who invented the two-fluid theory and predicted second
sound. (Tisza died on 15 April 2009; for more on his life and
contributions see PHYSICS TODAY, July 2009, page 65.) Landau
seemed to resist BEC as the basis for superfluidity, and there
Tisza was almost certainly correct. Landau apparently never
referenced a single work by London.4

Of course, the low- temperature experimentalists at the
Institute for Physical Problems were beavering away trying
to generate and detect second sound. In his 1967 book on he-

lium, John Wilks described their efforts:5

We briefly mention an historical point which
shows how difficult it may be to see the obvious
for the first time. The wave equation for second
sound [see box 1] and the first experiments all
came from the Russian workers at the Institute
for Physical Problems in Moscow. However,
even with the wave propagation equation before
them, the first attempts to generate second sound
were made using piezoelectric crystals to set up
pressure variations. It was only after these had
failed . . . that an analysis by [Evgeny] Lifshitz
showed that a much more effective method
would be by periodic heating.
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Figure 2. The velocity of second sound as computed by
Evgeny Lifshitz (red curve) and by Laszlo Tisza (green curve); for
comparison, the upper, black curve shows the velocity of first
sound. The blue points are today’s accepted values of  second-
sound velocity. Box 2 describes why Tisza’s formula did not
work.
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By 1947 Lev Landau had deduced that when plotted as energy E
versus momentum p, the excitation spectrum in helium  II has
the form shown in figure 1c. Because of the low temperatures,
the thermodynamic behavior depends only on the phonon
region near p = 0 and on the roton region near p = p0. Even
though the roton region has a large energy gap, the density of
states, proportional to dp/dE, becomes large near p0, and the
roton region will contribute strongly above 0.8 K. Thus the formi-
dable problem of helium II dynamics can be replaced by a calcu-
lable dilute gas of rotons and phonons moving through the
background fluid at absolute zero. Straightforward statistical
mechanics allows calculation of the number of phonons and
rotons per unit volume, and the total number density of those
so-called quasiparticles becomes N = Np + Nr , the entropy
becomes S = Sp + Sr , the specific heat becomes C = Cp + Cr , and
the normal fluid density becomes ρn = ρnp + ρnr . Those are all the
quantities needed to compute the velocity of second sound, as
done by Evgeny Lifshitz.

Lacking a detailed theory for the properties of helium II, Las-
zlo Tisza used the entropy data that Pyotr Kapitsa measured
above 1 K, which is dominated by the roton part, and extrapo -
lated it to absolute zero, thus missing the phonon contribution.
(Indeed, Tisza argued that the phonons should not be included
in the normal fluid.) The resulting discrepancy is enormous, as

shown in the figure: The green curve is Tisza’s formula, and the
blue points are today’s accepted values. Tisza also had no model
for the  normal-fluid density and simply guessed it was propor-
tional to the entropy, which is not true. But for accidental rea-
sons the temperature dependence of the roton parts of ρn and
Sn are similar, which is why Tisza was able to obtain a good fit
between his formula for the velocity of second sound and the
data above about 1.3 K (see figure 2).

Box 2. Landau’s phonon–roton theory

0.5 1.0 1.5 2.0 2.5
TEMPERATURE (K)T

0
10−8

10−6

10−4

10−2

100

E
N

T
R

O
PY

(J
/g

K
)

S



www.physicstoday.org October 2009    Physics Today 37

Figure 2 compares Tisza’s calculations for the velocity of
second sound with those by Lifshitz, which were based on
Landau’s phonon–roton theory. Tisza’s much earlier expres-
sion coincides closely with Lifshitz’s above 1.3 K, but contin-
ues downward below 1.2 K, reaching zero at absolute zero.
Thus, finding the velocity of second sound at low tempera-
tures became the goal to distinguish the Tisza and Landau
two-fluid theories. There is much more to Landau’s phonon–
roton theory than the velocity of second sound, but the
 second-sound velocity below 1 K somehow became the prize.

The first successful attempt to generate and detect second
sound was in 1944—during the war—by Vasilii Peshkov,6 who
implemented Lifshitz’s suggested approach (see figure 3a).
After the war, Cecil Lane and his two graduate students
William Fairbank and Henry Fairbank at Yale University tried
to observe second sound. Because of the disruption of the war,
the Yale group was initially unaware of Peshkov’s work.

Moscow may have had Landau and Lifshitz thinking
about experiments there, but the low- temperature group at
Yale had Lars Onsager, based in the chemistry department.
Seeking a way to detect second sound, Lane approached On-
sager, who suggested that it might be converted to ordinary
sound at a  liquid– vapor surface by the following mechanism.
Second sound consists of temperature fluctuations in the liq-
uid that propagate as a wave. At the  liquid– vapor interface,
such temperature fluctuations would cause periodic evapo-
ration and condensation, which in turn would give rise to
normal sound in the vapor.

Lane and the Fairbank brothers used Onsager’s idea to
detect second sound with the arrangement in figure 3b. The
details of the conversion of second sound at the free surface
to first sound in the vapor were later explained by Onsager
and his students. In a footnote to their paper, Lane and his
students stated, “We are greatly indebted to Professor Tisza
for drawing our attention to his articles in Journal de Physique,
copies of which had not reached us, and for making available
to us an advance copy of F. London’s paper before the Cam-
bridge conference in 1946. The above formulas are drawn
from this latter source. Mr. Tisza also communicated to us
Peshkov’s results, given at the same conference, which are in
good agreement with ours.” 7

Settling the controversy
Toward the end of their paper, Lane and his students wrote,
“Unfortunately we are unable to achieve a temperature
below 1.4°K with our set-up but in view of the accuracy of
our measurements and the fact of a distinct maximum in our
curve, Tisza’s theory seems to be somewhat favored over
Landau’s.”7

That statement resulted in the inevitable outburst by Lan-
dau. I do not have written sources for the following, but this
is what I recall: Landau apparently wrote a letter to the Physical
Review calling the Yale group “physics bandits,” probably in
part because he heard about the Yale measurements before the
Yale group had gotten Peshkov’s papers. Even in those days
the physics rumor mill operated at very high speed.

My guess is that the editors of the Physical Review sent
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Figure 3. Detecting second sound. (a) Resonator used by
Vasilii Peshkov in 1948 to study standing waves of second
sound in helium II. The glass tube G is closed at the bottom
and acts as a resonator. The heater H is mounted on a glass
disk that can be moved up and down by the tube A. The ther-
mometer T is an open winding of phosphor bronze wire on a
frame movable by tube B. An electrical current of frequency f
generates small temperature fluctuations of frequency 2f. The
thermometer T can be moved up and down to trace out the
standing wave patterns of second sound, from which the ve-
locity of second sound can be measured. In 1960 Peshkov
used a similar apparatus attached to a  helium-3 refrigerator to
reach temperatures as low as 0.4 K. (Adapted from ref. 6.)
(b) Apparatus used at Yale University to detect second sound
by Lars Onsager’s method. A thin lucite tube was inserted into
liquid helium (blue) in a dewar surrounded by liquid nitrogen
(pink). A heater H at the bottom of the tube was excited at
1 kHz, and a microphone M in the vapor above the liquid was
tuned to 2 kHz and its signal rectified. As the liquid helium
bath evaporated, the free surface fell and resonant peaks ap-
peared from the microphone output, from which the velocity
of second sound could be deduced. (Adapted from ref. 7.)

Figure 4. Modern superleak
transducer for second sound. 
Nuclepore is a plastic film with
 micron-size holes created by fis-
sion fragments in a reactor. Here
a thin film of nuclepore (red) is
plated with gold on one side to
make a capacitor “loudspeaker.”
The frame (gray) is connected
to a bias voltage
and connected to
ground by a large capaci-
tor, the rod and button (white)
are insulated electrically (green)
and connected to an oscillator,
and the whole apparatus is im-
mersed in a bath of helium II. The
oscillator causes the nuclepore to
vibrate, typically at 20–50 kHz.
The normal fluid cannot pass
through the film’s holes, but the
superfluid can, and the transducer can act as a generator or
detector for second sound.
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Landau’s manuscript to Lane for review, and in the end ruled
against publication. Lane, who had a wry sense of humor, re-
marked that the Yale low-temperature group would probably
be named “enemies of the people of the USSR” and shot by the
first wave of troops in the Soviet invasion of New England.

The second problem was that the Yale group quoted the
formula for  second-sound velocity derived first by Landau,
and attributed it to Tisza. The outburst from Landau
prompted an erratum by Lane’s group: “We regret our failure
to acknowledge Landau’s priority and assure him that this
failure was unintentional.”7

The editors of the Physical Review apparently decided to
let Landau and Tisza have it out in two adjacent publications
in “Letters to the Editor.”8 (In those days such letters were not
subject to peer review.) In a footnote to his, however, Landau
wrote,

I am glad to use this occasion to pay tribute to 
L. Tisza for introducing, as early as 1938, the con-
ception of the macroscopical description of he-
lium II by dividing its density into two parts and
introducing, correspondingly, two velocity
fields. This made it possible for him to predict
two kinds of sound waves in helium II. [Tisza’s
detailed paper (J. de phys. et rad. 1, 165, 350
(1940) was not available in the U.S.S.R. until 1943
owing to war conditions, and I regret having
missed seeing his previous short letter (Comptes
Rendus 207, 1035, 1186 (1938)).] However, his en-
tire quantitative theory (microscopic as well as
 thermodynamic- hydrodynamic) is, in my opin-
ion, entirely incorrect.

In his reply Tisza wrote,
Landau criticizes our ideas not so much because
of their internal inconsistency but because they
do not follow his theory of phonons and rotons.
We are frankly impressed by the audacity and
power of Landau’s approach but we feel that he
has introduced into his theory more or less dis-
guised assumptions which cannot claim the
same degree of certainty as the principles of
quantum mechanics.

In a publication about the same time, Lifshitz was not much
kinder. Anyone interested in the details of the controversy
should read Lifshitz’s section “The Tisza Theory of
Helium II” starting on page 51 of his book A Supplement to
“Helium,” written with Elepter Andronikashvili. That book,
almost unknown in the low- temperature literature, was writ-
ten as a supplement to the Russian translation of the famous
book Helium by Willem Keesom of the University of Leiden.9

Experiment ultimately settled the controversy. When
Peshkov was able to get to about 1.2 K in 1948, he observed
the velocity of second sound flattening off; finally in 1960 he
was able to get to about 0.5 K, in very good agreement with
Lifshitz (see figure 2), and settle the dispute once and for all.6

Peshkov also found that below 0.5 K, second sound does not
exist in any meaningful way, presumably because the density
of the normal fluid is so low that thermodynamic equilibrium
cannot be established.

In 1959 Kenneth Atkins predicted two more propagating
wave modes in helium II, which he called third sound and
fourth sound.10 Fourth sound is much like second sound: It
is a pressure wave that travels only in the superfluid, such as
in a resonator filled with fine powder that immobilizes the
normal fluid. Third sound is a surface wave on a thin film of
helium II. Such a film can form on, for example, a vertical mi-

croscope slide whose lower edge dips into a bath of helium II.
Both of these phenomena have been valuable in exploring the
properties of superfluid helium.

Second sound today
All the above would be a historical footnote, except that sec-
ond sound has turned out to be an incredibly valuable tool
in the study of quantum turbulence (see my article with Joe
Vinen, in PHYSICS TODAY, April 2007, page 43) and may be a
useful probe of ultracold atoms.

Second sound can be generated by any means that sep-
arates the motion of normal fluid and superfluid. A  second-
sound transducer in current use is shown in figure 4. In the
mid-1950s Vinen used second sound to study heat currents:
A heater at one end of a closed tube generated a “counter-
flow” of the two fluids in helium II. Turbulence in the super-
fluid component was suspected as causing, in some way, the
attenuation in second sound observed in those experiments.
The theoretical discovery of quantized vortices—the culprit
in the counterflow experiments—by Onsager and Richard
Feynman was still unpublished at the time. Henry Hall and
Vinen later discovered in 1956 that second sound is also at-
tenuated in a rotating bucket of helium II, and they correctly
deduced that the attenuation was due to the presence of an
array of quantized vortices (by then published).11

In the early 1990s my group at the University of Oregon
initiated the study of quantum turbulence by towing screens
through helium II, which creates intense turbulence without
a temperature gradient or rotation. From the measured atten-
uation of second sound we could deduce the total length of
the vortices tangled up in the  second-sound resonator (see
box 3). Our experiments spanned five orders of magnitude
in vortex density, an achievement made possible only by sec-
ond sound: A classical wind tunnel would have to be 1000 km
long to obtain the same data as we observed in a 1 × 1 cm
channel 40 cm long.

What makes second sound such a sensitive probe? The

In the  second-sound transducer shown in figure 4, a typical res-
onant response of second sound in quiescent helium  II is a
Lorentzian curve with amplitude A0 and full width at half maxi-
mum Δ0. Turbulence reduces the amplitude to A. For small
attenuation, the length L of quantized vortex per unit volume is
given approximately by

where κ = h/m ≃ 9.97 × 10−4 cm2s−1 is the quantum of circula-
tion and B is the coefficient of mutual friction at the tempera-
ture of interest.

Vorticity is defined in an ideal (inviscid) fluid as the curl of
the fluid velocity, or the circulation per unit area. In terms of the
above parameters, the vorticity is taken to be ω = κL. A simple
example of vorticity is a bucket of helium II rotating steadily at
an angular velocity Ω. The vorticity is 2Ω, and per unit area
there are L = 2Ω/κ ≃ 2000 quantized vortex lines aligned paral-
lel to the axis of rotation.

In our towed-grid experiments at the University of Oregon,
the lower level of sensitivity is dramatic: L = 10 cm−2, corre -
sponding to a vorticity of ω = 10−2 s−1. On the higher end we
have recorded vorticity to 50 000 s−1 in turbulence produced by
a towed grid—a range of five orders of magnitude.

Box 3. Second sound and vortex density

( (L = ,− 1
16Δ0 A0

κB A
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answer goes back to Landau’s phonon–roton theory of he-
lium II. Rotons can scatter off a vortex, and in the process they
can undergo so-called species reversal,12 in which their 
energy is conserved but their group velocity is reversed as
they switch between the R+ and R− roton branches shown in
figure 1d. In the process, momentum is transferred to the vor-
tex. Although most of that momentum exchange occurs
within 9 Å of the vortex, species reversal can extend to a range
of 150 Å and lead to a substantial net momentum transfer.

In his original prediction of second sound 70 years ago,
Tisza used a Bose- condensed gas as the starting point of his
two-fluid description. His seminal work got bogged down
over the years with the question of how relevant that model
was in dealing with helium II, a strongly interacting fluid for
which the assumption of weak interactions breaks down.2

With the discovery of BEC in trapped atomic gases in 1995,
one can ask if second sound exists in such superfluid gases.

The key requirement for the validity of two-fluid hydro-
dynamics in atomic gases is that the collision rate between
excitations (that is, quasiparticles) be strong enough to
achieve local hydrodynamic equilibrium when the gas is in
a state perturbed from equilibrium. That collisional hydro-
dynamics regime has been difficult to achieve in dilute Bose-
 condensed gases because the interactions are not strong
enough. However, in ultracold Fermi gases, atoms can pair
and Bose-condense (see the article by Carlos Sá de Melo in
PHYSICS TODAY, October 2008, page 45), and by using an
atomic Feshbach resonance to increase the interaction
strength in such systems, one should be able to access the
two-fluid hydrodynamic region.

Inspired by the above picture, theorists have recently cal-
culated the frequencies of first and second sound in a trapped
Fermi superfluid gas at finite temperatures.13 That effort re-
quires knowing all the thermodynamic functions that enter the
coefficients of the equations in box 1. Of course, the elementary
excitations in Fermi gases are quite different from the phonon–
roton excitations in superfluid 4He. Nonetheless, the recent
work showed that second sound is very similar in strongly in-
teracting Fermi superfluid gases and superfluid 4He—the two
components are out of phase in an almost pure temperature
oscillation. The predicted temperature dependence of the two
sound velocities in superfluid gases (figure 5) shows a striking

similarity to that observed in helium II (figure 2).
Future experiments may be able to detect such temper-

ature waves in Fermi superfluid gases using pulse propaga-
tion along the major axis of  cigar-shaped trapping potentials.
That would be a fitting conclusion to our story about second
sound and the pioneering work of Tisza in 1938.

In writing this account, I am indebted to Allan Griffin for informing
me of recent research on cold gases and for helpful comments on the
manuscript, to Sébastien Balibar for his insightful article in refer-
ence 4, and to Joe Vinen for a careful reading of a draft of this paper.
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Figure 5. Calculated first- and  second-sound velocities in a
uniform superfluid gas of ultracold Fermi atoms at unitarity,
the point at which the atomic scattering length is
infinite. The velocities are given relative to the Fermi velocity,
and the temperature T is scaled to the superfluid transition
temperature Tc . (Adapted from ref. 13.)
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